If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=41x
We move all terms to the left:
10x^2-(41x)=0
a = 10; b = -41; c = 0;
Δ = b2-4ac
Δ = -412-4·10·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-41}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+41}{2*10}=\frac{82}{20} =4+1/10 $
| -86-2(11b)+4(5b)=26 | | 3n+4n=25 | | 7n/8=21 | | (x/4)+1=x/5 | | x/4+1=x/5 | | 1/6x+21/2x=51/2 | | -33+y=40 | | -0.18x+x=1 | | 12r+6=30 | | 1/4(3d-2)-1/2(d-1)=-1/7 | | -6r+4=-20 | | 68=2n | | 3x^2=18+3/4 | | 3(12-2)=30+12-2-x+2 | | p+489.50=756.80 | | 7r+2=22r+5 | | -3(2/3)=y | | 3x^2−14x−5=0 | | 4.6x+39.4=1.0-8.2x | | 2x+45+x=189 | | (7x-2)/5=(-8x-4)/2 | | 15x^2+39-18=0 | | 3/2z=2 | | -2x+10=3x+30 | | (7x-4)=4x+8) | | 8=2(v+6) | | 16/9=x² | | 4x+3+x=6x+2-2 | | 9^3x=27^x+1 | | 5x+6+9x-6=180 | | 20=5t^2–30t+45 | | 8x-2=5x-8=0 |